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11Abstract This paper argues for a need to develop methods for examining temporal patterns
12in computer-supported collaborative learning (CSCL) groups. It advances one such
13quantitative method—Lag-sequential Analysis (LsA)—and instantiates it in a study of
14problem-solving interactions of collaborative groups in an online, synchronous environ-
15ment. LsA revealed significant temporal patterns in CSCL group discussions that the
16commonly used “coding and counting” method could not reveal. More importantly,
17analysis demonstrated how variation in temporal patterns was significantly related to
18variation in group performance, thereby bolstering the case for developing and testing
19temporal methods and measures in CSCL research. Findings are discussed, including issues
20of reliability, validity, and limitations of the proposed method.

21Keywords Q1Temporality . Lag-sequential analysis . Collaborative learning . Temporal
22methods . Event-based process analysis
23

24Introduction

25I advance a quantitative method for characterizing and analyzing the temporal patterns in
26computer-supported, collaborative learning (CSCL) and problem solving. This paper comes
27in response to recent calls for a greater focus on temporality; underpinning this work is the
28belief that learning in general, and problem solving in particular, is a continuous, dynamic
29process that evolves over time. In a seminal paper on temporality published in ijCSCL,
30Reimann (2009) argued that, “Temporality does not only come into play in quantitative
31terms (e.g., durations, rates of change), but order matters: Because human learning is
32inherently cumulative, the sequence in which experiences are encountered affects how one
33learns and what one learns” (p. 1). Understanding how such processes evolve in time and
34how variation in this evolution explains learning outcomes ranks among the most important
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35challenges facing educational research—and temporal methods that expand the methodo-
36logical toolkit are needed (Akhras and Self 2000; Kapur et al. 2007; McGrath and Tschan
372004; Suthers et al. 2007).
38It is not surprising therefore that there has been a push in CSCL research towards
39unpacking temporal patterns in group interactions and understanding how these patterns
40relate to group and individual performance and learning (Stahl 2005; Suthers 2006).
41Reimann (2009) argued “although CSCL researchers are privileged in the sense that they
42have direct access to processes as they unfold over time (via recordings), there is
43comparatively little research that makes use of the information contained in the order and
44duration of events” (p. 1). This presents a unique challenge to traditional analytical
45measures and methods for analyzing group processes because, for the most part, existing
46methods continue to take cumulative accounts of member interactions (e.g., categorization
47of interactional content, rating of discussion quality, member perceptions, and so on) and
48relate them to group performance. While these accounts are certainly useful, they fail to
49fully utilize the temporal information embedded in the data. A failure to utilize temporal
50information naturally reduces the power of the analysis, which may, in turn, limit the
51validity of the conclusions drawn. Therefore, measures and methods for characterizing and
52analyzing the evolution of problem-solving processes are needed (Arrow et al. 2000;
53Collazos et al. 2002; Kapur et al. 2007; Kapur et al. 2005; McGrath and Tschan 2004;
54Reimann 2009). Therein lies the need for the research reported in this paper.
55This manuscript is organized into four sections. (i) I start with a brief review of how
56interaction has been studied in CSCL research and argue for a need for temporal measures.
57A substantial amount of literature attempts to understand group processes using qualitative
58analytical methods, which provide insightful and meaningful microgenetic accounts.
59Indeed, these methods are highly useful for revealing temporal patterns over multiple
60timescales. For the present purposes, however, my analysis is delimited to quantitative
61approaches,1 typically involving quantitative content analysis (QCA) of interactional data
62(Chi 1997). The use of QCA, also commonly known as “coding and counting,” is pervasive
63in examining the nature of interaction in CSCL research (Rourke and Anderson 2004;
64Suthers 2006). (ii) Next, I derive a measure—transition patterns—for characterizing the
65problem-solving process. (iii) I then situate the discussion and illustration of the proposed
66measure in a study of problem-solving interactions of collaborative groups in a CSCL
67environment. (iv) Finally, I discuss issues of reliability, validity, and limitations of the
68proposed temporal method.

69The need for temporal measures

70Because learners interact with and influence each other in the process of problem solving,
71these interactions form important units of analyses for research; problem-solving
72interactions have been used extensively in investigating productivity conditions of
73collaborative groups (e.g., Barron 2003; Cohen et al. 2002; Jonassen and Kwon 2001;
74Kapur and Kinzer 2007; Lee et al. 2006; Scardamalia 1989, 1992; Schellens and Valcke
752006; Spada et al. 2005; Zumbach et al. 2005). Because these studies seek to understand
76group processes and outcomes, they attempt to explain the variation between groups, e.g.,

1 My focus on quantitative methods should not be mistaken for a singular commitment to or reliance on such
methods, nor is it something that I suggest others should do. Indeed, I have advocated and used qualitative
methods in my earlier work as part of a larger mixed-method analytical commitment.
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77why do some groups collaborate better than others? Why are some groups more productive
78than others? Naturally, part of the variation in the productivity of group is a function of the
79group process, an analysis of which typically informs a process theory2 that mediates between
80input variables (e.g., conditions, context, manipulations) and outcome variables (e.g.,
81performance, learning) (Reimann 2009).
82As an example of how experimental manipulation influences group processes, and how
83these processes in turn influence outcomes, consider my earlier work on productive failure
84(Kapur 2008; Kapur and Kinzer 2009). In a randomized controlled experiment, I assigned
85student triads to solve either well- or ill-structured physics problems. Analysis suggested
86that the groups in the two conditions differed significantly in both their processes and
87outcomes. Compared to groups who solved well-structured problems, groups who solved
88ill-structured problems expectedly struggled with defining and analyzing the problems.
89Their discussions were significantly more complex, chaotic, and divergent, resulting in poor
90group quality of solutions produced in the shorter term. However, despite failing in their
91collaborative, problem-solving efforts, these students outperformed their counterparts from
92the well-structured condition on both well- and ill-structured problems subsequently,
93suggesting a latent productivity in what seemed to be failure initially. In other words, group
94processes that led to failure initially were more productive for individual learning in the
95longer term than group process that led to performance success.
96Invariant across the abovementioned studies, including my own, is a quantitative method
97for unpacking group processes, commonly called the “coding and counting” method
98(Suthers 2006). This method involves applying one or more coding schemes (as informed
99by some process theory) to the interaction data resulting in a cumulative or relative
100frequency distribution of interactions across the categories of the coding scheme
101(hereinafter referred to as process categories, e.g., depth of explanations, functional content
102of interactions, misconceptions) (Strijbos et al. 2006). These distributions essentially tally
103the amount, proportion, and type of interactions vis-à-vis the interactional coding scheme.
104Significant links are then sought between quantitatively-coded interactional data and
105outcomes, such as quality of group performance and group-to-individual transfer (see
106Rourke and Anderson (2004) for a discussion on the validity of QCA). For example,
107consider a prototypical case wherein such an analysis may reveal that successful groups had
108greater proportions of explanation and critique than the less successful groups. If so, this
109would bolster a process theory that emphasizes the role of explanations and critique in
110learning (Chi et al. 1989, 1994). Clearly, such “coding and counting” analyses are useful
111because they help explain how the distribution of process categories relates to outcome
112variation (Reimann 2009).
113Notwithstanding the empirically supported significant links between the distribution of
114process categories and group performance and learning, interpreting findings from
115interactional coding schemes is limited by the very nature of the information tapped by
116these measures. These measures tell us that a certain proportion of interactional content was
117coded in a particular process category but nothing about the sequence or order of these
118categories. By aggregating counts over time, information about temporal variation is lost.
119Such an analysis, therefore, does not take the temporality of interactions into account. For
120example, in the prototypical case earlier, there could be two groups with similar proportions
121of explanation and critique in their discussions. However, these groups could be very
122different when the temporal information is factored in. For one group, it could be that

2 Reimann (2009) provides an excellent description of the how temporal events in group processes mediate
between input factors and outcome variables.
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123explanations were followed by more explanations, and likewise for critique. For the other
124group, it could be the case that explanations followed critiques that in turn led to more
125explanations and critique. In other words, for the first group, the learning mechanisms
126invoked by explanations and critique could be independent of each other whereas for the
127second group, they could be co-evolving and dependent. By simply coding and counting,
128an explanation that follows an explanation is accorded the same weight as one that follows
129critique—an assumption of temporal homogeneity (Kapur et al. 2008) that is rarely valid in
130light of the complexities of group dynamics.
131The above example illustrates that groups with similar frequency distribution of process
132categories may well have contrasting temporal dynamics of those process categories. More
133importantly, this temporal contrast may be germane to a process theory of group learning
134and performance. After all, evidence suggests explanations that follow critiques or impasses
135are more likely to invoke processes that are germane for learning (Van Lehn et al. 2003).
136Therefore, methods that take temporality into account stand to not only add to the
137methodological toolkit of the researcher but also help in building a better process theory of
138group learning and problem solving (Reimann 2009).

139CSCL research on temporality using quantitative approaches

140There is a small but growing body of CSCL research that is beginning to develop temporal
141measures to better understand CSCL processes using quantitative methods. I describe a few
142illustrative (but not exhaustive) examples, including my own initial forays.
143Soller and colleagues (2002) used Hidden Markov Modeling (HMM; Rabiner 1989) to
144analyze and assess temporal patterns in on-line knowledge-sharing conversations over time.
145Their HMM model could determine the effectiveness of knowledge-sharing episodes with
14693% accuracy, that is, 43% above what one would expect by chance. They argued that
147understanding the temporal dynamics of how groups share, assimilate, and build knowledge
148together is important in building a process theory of facilitation to increase the effectiveness
149of the group interactions.
150Employing a different analytical method—Time Series Analysis—Muukkonen and
151colleagues (2007) modeled changes in students’ emotions as they engaged in their ongoing
152projects and collaboration. Students responded to survey queries through their mobile
153phones five times a day for a period of two weeks. Student interviews and query data were
154used to form a picture of the variation of daily routines, challenges, and reflections of one’s
155own activities, and more importantly, the extent to which this variation related to their
156engagement in learning.
157Jeong (2005) illustrated how exploratory sequential analysis can be used to measure the
158likelihood of a message receiving a response in computer-mediated discussion boards, the
159types of such responses (e.g., challenging, giving evidence, explaining), and whether
160sequences of responses (e.g., claim → challenge → explain) evidence theoretically-
161conjectured sequences that are germane for problem-solving and learning. Q2Olson et al.
162(1994) described a similar approach wherein they examined how sequential interactional
163patterns differed between supported (with electronic representational tools) and unsupport-
164ed collaborative groups. In both Jeong’s and Olsen et al.’s work, one finds a careful
165consideration and development of process categories, sequences of which are then
166examined to detect patterns that occur significantly above chance level. Much as the
167detection of sequential patterns is important in and of itself, neither study described
168analytical procedures for relating these sequential patterns to group performance.
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169My earlier attempts at examining temporal patterns of CSCL problem-solving groups
170entailed using a Random Walk model (Ross 1996) to model convergence in group
171discussions (Kapur et al. 2008). Analysis revealed that high (low) quality member
172contributions made earlier in a discussion did more good (harm) than those made later on.
173A differential temporal impact of member contributions suggested a high sensitivity to early
174exchange. More importantly, by relating this process sensitivity to eventual group
175performance, analysis showed that group performance could be predicted based on what
176happened in the first 30–40% of a discussion. From the standpoint of a process theory of
177facilitating and scaffolding group problem solving, findings suggested a greater emphasis
178on the earlier phases of a group discussion.
179While each of the abovementioned examples examined temporality in CSCL groups,
180they did so using different analytical methods and in different contexts. However, common
181across these examples is an emphasis on: a) understanding temporal variation to uncover
182patterns that may otherwise not be possible using coding and counting methods, and b)
183informing a process theory of collaborative learning and performance. I believe this dual
184emphasis is important and necessary, and one that can be set as broad criteria which
185temporal methods, including the one that is advanced in this paper, must minimally meet.

186An illustrative study

187The purpose of this paper is to advance a method for analyzing the temporal patterns in
188CSCL discussion. The focus is squarely methodological. I situate the discussion and
189illustration of the proposed method in a study of CSCL problem-solving interactions, which
190was part of a larger program of research on productive failure described earlier (Kapur
1912008; Kapur and Kinzer 2009). I briefly describe the context of the study in which the
192methodology was instantiated before illustrating the methodology.

193Research context and data collection

194Participants were 177, 11th-grade science students (120 male, 57 female) from two co-
195educational, English-speaking high schools in the National Capital Region of India.
196Students in the science stream typically study Mathematics, Physics, Chemistry, and
197English as their main academic subjects. The school’s curriculum was prescribed by the
198Central Board of Secondary Education (CBSE) of India. These schools were of similar
199academic standing. Using data from the 10th-grade CBSE national standardized test scores
200in science, an ANOVA did not find any significant difference between the two schools in
201terms of student ability in science, p=.227. As is typically the case, students came from
202upper-middle class families and were considered technologically savvy. The study was
203designed to reflect the schools’ science curricula. Prior to the study, all students had
204completed the curricular unit on Newtonian kinematics—the targeted conceptual domain of
205the study.
206All students took a twenty-item, multiple-choice pretest on the targeted concepts
207(Cronbach alpha = .81). The 177 students were first randomly grouped into triads, resulting
208in 59 groups. These groups were then randomly assigned to one of two conditions: an ill-
209structured (IS) problem-solving condition (28 groups) or a well-structured (WS) problem-
210solving condition (31 groups). A post-randomization check revealed that there was no
211significant difference between students on the pretest, p=.317. They were instructed to
212collaborate with their group members to solve either a well-structured (WS) or an ill-
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213structured (IS) problem scenario as appropriate to their assigned condition. The study was
214carried out in the school’s computer laboratory, where group members communicated with
215one another only through synchronous, text-only chat. The chat application allowed groups
216to privately and simultaneously engage in synchronous discussions and automatically
217archived the transcript of their discussion as a text file. These 59 transcripts, one for each
218group, contained the problem-solving interactions of group members as well as the final
219solutions produced by the groups and formed the data source. All the materials—the pretest
220and the problem scenarios—can be found in Kapur (2008), and are therefore not
221reproduced here.

222Procedure

223AWS and an IS problem scenario were developed consistent with Jonassen’s design theory
224typology for problems (2000). Both problem scenarios dealt with a car accident scenario
225and targeted the same concepts from Newtonian Kinematics and Laws of Friction to solve
226them. Content validation of the two problem scenarios was achieved with the help of two
227physics teachers from the school with experience in teaching those subjects at the senior
228secondary levels. The teachers also assessed the time students needed to solve the
229problems. Pilot tests with groups of students from the previous cohort further informed the
230time allocation for the group work, which was set at 1.5 h. Ultimately, all groups completed
231the problem in the allotted time.
232The study was carried out in the school’s computer laboratory. The online synchronous
233collaborative environment was a Java-based, text-only chat application running on the
234Internet. Despite these participants being technologically savvy in using online chat, they
235were familiarized with the use of the synchronous text-only chat application prior to the
236study. Group members could only interact within their group. Each group’s discussion and
237solution were automatically archived as a text file to be used for analysis. A seating
238arrangement ensured that participants of a given group were not proximally located so that
239the only means of communication between group members was synchronous, text-only
240chat.
241To mitigate status effects, I ensured that participants were not cognizant of their group
242members’ identities; the chat environment was configured so that each participant was
243identifiable only by an alphanumeric code. Cross-checking the transcripts of their
244interactions revealed that participants followed the instruction not to use their names and
245instead used the codes when referring to each other. No help regarding the problem-solving
246task was given to any participant or group during the study. Furthermore, no external
247member roles or division of labor were suggested to any of the groups. The procedures
248described above were identical for both WS and IS groups. The time stamp in the chat
249environment indicated that all groups made full use of the allotted time of 1.5 h and solved
250their respective problems.

251Data coding of problem-solving interactions into process categories

252Quantitative Content Analysis (QCA) (Chi 1997) was used to segment and code utterances.
253The unit of analysis was semantically defined as the function(s) that an intentional utterance
254served in the problem-solving process. Bransford and Nitsch (1978) support the case for
255semantically-defined units by viewing meaning-making and understanding as functions of
256the interdependence between interaction and context. Thus, every utterance was segmented
257into one or more interaction unit(s), and coded into process categories adapted from the
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258Functional Category System (FCS)—an interaction coding scheme developed by Poole and
259Holmes (1995). Accordingly, each interaction unit was coded into one of seven problem-
260solving process categories:

2611. Problem Analysis (PA): Statements that define or state the causes behind a problem (e.g.,
262“I think the man was driving too fast”),
2632. Problem Critique (PC): Statements that evaluate problem analysis statements (e.g.,
264“how can you be sure that the man was driving fast?”),
2653. Orientation (OO): Statements that attempt to orient or guide the group’s process,
266including simple repetitions of others’ statements or clarifications; statements that
267reflect on or evaluate the group’s process or progress (e.g., “lets take turns giving our
268opinions”),
2694. Criteria Development (CD): Statements that concern criteria for decision making or
270general parameters for solutions (e.g., “we need to find the initial speed of the car”),
2715. Solution Development (SD): Suggestions of alternatives, ideas, proposals for solving
272the problem; statements that provide details or elaborate on a previously stated
273alternative. They are neutral in character and provide ideas or further information about
274alternatives (e.g., “use the 2nd equation of motion”),
2756. Solution Evaluation (SE): Statements that evaluate alternatives and give reasons,
276explicit or implicit, for the evaluations. This also included statements involving simple
277agreement or disagreement with criteria development or solution suggestion statements
278especially since these statements were frequently coupled with evaluative responses.
279Statements that state the decision in its final form or ask for final group confirmation of
280the decision. (e.g., “yes, but how do we get acceleration?”), or
2817. Non-Task (NT): Statements that do not have anything to do with the decision task.
282They include off-topic jokes and tangents (e.g., “lets take a break!”).

283After an initial training phase, two trained doctoral students independently coded the
284interactions with an inter-rater reliability (Krippendorff’s alpha) of .88. The result of coding
285the problem-solving interactions was a representation of each problem-solving discussion
286as an ordered sequence of FCS process categories.

287Results

288I present the analyses and corresponding results in three major sections.
289First, I present a typical coding and counting multivariate analysis. Recall that the coding
290of discussion data reduced each discussion to a string of FCS process categories. By
291calculating the relative frequency of each process category, a multivariate analysis shed
292light on the functional content of WS and IS group discussions. This coding and counting
293analysis served as a baseline against which the added value of the temporal method could
294be evaluated.
295Second, given the stated limitations of a coding and counting analysis, I examine the
296transition patterns between process categories. Using an analytical technique called Lag-
297sequential Analysis (LsA; Bakeman and Gottman 1997; Wampold 1992), I examine the
298likelihoods of how some process categories follow or are followed by other process categories.
299LsA revealed significant insights into the temporal patterns in the transitions between process
300categories, including how these patterns differed between WS and IS groups.
301Finally, I relate the significant temporal patterns to group performance, as measured by
302the quality of group solutions. I first establish that there is in fact a significant difference in
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303group performance between WS and IS groups. I then demonstrate that the strongest
304interactional predictor of group performance is the transition pattern between process
305categories.
306Taken together, I describe one way in which examining temporal patterns can reveal
307significant insights over and above the coding and counting method, and contribute to a
308larger process theory of CSCL. It is worth reiterating that I am not proposing to replace
309the coding and counting method with LsA. I advance LsA as a value-added, which can
310provide additional insights over and above those provided by the coding-and-counting
311methods.

312Coding and counting

313The proportion of interactional activity in the six functional categories PA, PC, OO, CD,
314SD, and SE formed the six dependent variables in the coding and counting analysis.
315Proportion of NT was very small, and was excluded from the analysis. Controlling for the
316effects of school and group prior knowledge (mean score of group members on the pretest),
317a MANCOVA revealed a significant multivariate effect of WS vs. IS groups on the
318functional content of their discussions, F(6, 50)=3.46, p=.006, partial η2=.29. As a rule of
319thumb, partial η2=.01 is considered a small, .06 medium, and .14 a large effect size (Cohen
3201977). Table 1 presents the descriptive statistics.
321The six univariate Levene’s tests for equality of error variances were statistically not
322significant. Univariate analyses showed that IS groups had significantly greater proportion
323of activity centered on:

324■ PA: problem analysis, F(1, 55)=16.81, p<.001, partial η2 =.23,
325■ PC: problem critique, F(1, 55)=12.27, p=.001, partial η2=.18, and
326■ CD: criteria development, F(1, 55)=3.79, p=.047, partial η2=.06.

327In contrast, WS groups had significantly greater proportion of activity centered on:

328■ SD: solution development, F(1, 55)=4.37, p=.041, partial η2=.07.

329There was no significant difference in the OO and SE activity between WS and IS
330groups. IS groups had greater proportion of interactional activity centered on PA, PC, and
331CD whereas WS groups had greater proportion of interactional activity centered on OO,
332SD, and SE, although OO and SE did not reach significance.

t1.1 Table 1 Descriptive statistics for functional content of WS and IS group discussions

t1.2 Functional Category WS Groups IS Groups

t1.3 M SD M SD

t1.4 PA: Problem Analysis .046 .022 .081* .031

t1.5 PC: Problem Critique .032 .016 .053* .020

t1.6 OO: Orientation .355 .128 .382 .079

t1.7 CD: Criteria Development .045 .019 .053* .018

t1.8 SD: Solution Development .354* .126 .272 .087

t1.9 SE: Solution Evaluation .151 .052 .143 .046

*p<.05
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333Transitions between process categories

334The coding and counting analysis does not provide any indication or measure of the
335temporal patterns in the process categories. For example, what are the transitions between
336process categories? Are some process categories more likely to follow or be followed by
337other process categories? Are these likelihoods different for WS and IS groups? These
338questions seek to understand the transition probabilities between process categories, and in
339doing so, uncover temporal patterns in the input sequence of process categories (recall that
340the data coding reduced each discussion to a temporal string of process categories).
341One method of quantitatively examining these transition probabilities is Lag-sequential
342analysis (LsA)—a technique increasingly being used to detect such patterns. LsA treats
343each interactional unit (defined earlier) as an observation; a coded sequence of these
344observations forming the problem-solving sequence of a group discussion (Erkens et al.
3452003). It detects the various non-random aspects of interactional sequences to reveal how
346certain types of interactions follow others more often than what one would expect by
347chance (Wampold 1992). It accomplishes this by comparing the expected and actual
348transition probabilities between process categories to identify statistically significant
349transitions from one type of interactional activity to another; statistical significance
350corresponding to an alpha level of .05 (for a fuller treatment of LsA and related methods
351that are beyond the scope of this paper, see Bakeman and Gottman 1997; Sanderson and
352Fisher 1994; Wampold 1992). These transition probabilities can then be converted into odds
353ratios or likelihoods for comparison.
354The software program Multiple Episode Protocol Analysis (MEPA) was used for
355carrying out LsA.3 LsA revealed significant differences between the discussions of WS and
356IS groups (see Fig. 1). In Fig. 1, a category with an arrow directed to itself means that
357groups in that condition were at least twice as likely to sustain that type of activity, i.e., the
358activity was at least twice as likely to appear in coherent clusters rather than throughout the
359discussion. For example, PA was at least twice as likely to be followed by more PA in WS
360groups than in IS groups; attempts at problem analysis were followed by more problem
361analysis. An arrow from one category to another represents a directed transition. For
362example, PA activity was at least twice as likely to be followed by PC activity in IS groups;
363attempts at problem analysis were followed by problem critique, which in turn were
364followed by even more critique.
365Figure 1 suggests that with regard to how groups sustained different types of activities,
366IS groups were at least twice as likely to sustain PC and SE activities. For example,
367sequences where PC was followed by PC, and inductively, more PC, were twice as likely to
368be found in IS group discussions than in WS group discussion. In contrast, WS groups were
369at least twice as likely to sustain PA, CD, and SD activities. With regard to transitions, there
370were no significant transitions that WS groups were more likely to exhibit. In contrast, the
371discussions of IS groups were more likely to exhibit many significant transitions (PA-PC,
372PA-CD, and CD-SD) as well as feedback loops (SE-PA and SE-PC).
373Inducting on the transition likelihoods, it follows that the discussions of WS groups were
374more likely marked by interactional sequences: PA-PA-PA, CD-CD-CD, SD-SD-SD (three
375instances of a process category are chosen just as an illustration of the pattern; sequences
376can be shorter or longer depending upon the transition probabilities). Discussions of IS
377groups, by contrast, were more likely marked by sequences: PA-PC-PC-PC, PC-PC-PC,

3 MEPA was developed by Dr Gijsbert Erkens. For more information, see http://edugate.fss.uu.nl/mepa/
index.htm.
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378PA-CD, PA-CD-SD, CD-SD, CD-SD-PC, CD-SD-PC-PC-PC, SD-PC-PC-PC, SE-SE-SE,
379SE-PA, SE-PA-PC, SE-PA-PC-PC-PC, SE-PA-CD, SE-PA-CD-SD, SE-PA-CD-SD-PC-PC-
380PC-PC, SE-PC, and SE-PC-PC-PC.
381Note that the greater the number of significant transitions and feedback loops, the greater
382the number of possibilities in which the discussion could unfold from any given point/event
383in the discussion. This, in turn, suggests not only greater interactional complexity but also
384more divergent temporal event trajectories. Of course, an intuitive way of understanding
385this is to realize that the greater the number of interactions between the components
386(process categories) of a given system (group discussion), the greater is its complexity
387(Holland 1995; Kauffman 1995).
388Thus conceived, LsA can be analogously related with Kauffman’s (1995) measure of
389complexity for the evolution of Boolean networks. The relation becomes clearer when
390one conceives the FCS process categories as component states of an evolving Boolean
391network; Boolean in the sense that, at any point in time, a component state (PA, PC, etc.)
392may be present or absent in the group discussion, and interactions between the component
393states may be represented in terms of probabilistic logical functions. This, in many ways,
394is what LsA attempts to do; it looks at the probability of how certain process categories
395(or component states) follow others at a rate that is significantly above chance level: an if-
396then probabilistic logical function. As a result, the collaborative process can be examined
397as an evolving, multi-state Boolean network, and the greater the number of significant
398transitions between the component states, the greater the complexity of and divergence in
399the temporal trajectories of its evolution (for a fuller treatment, see Bar-Yam 2003;
400Kauffman 1995).
401Figure 1 suggests that the IS group discussions seemed to exhibit greater divergence and
402complexity relative to those of WS groups. Based on the argument above, this complexity
403was a direct function of the number of statistically significant transitions between process
404categories (Bar-Yam 2003; Kauffman 1995). Therefore, I compared the number of such
405significant transitions between IS and WS groups.
406IS groups, M=8.27, SD=3.00, had a greater number of significant transitions between
407process categories than WS groups, M=3.27, SD=2.52. Controlling for the effect of group
408prior knowledge (as measured by the pretest), an ANCOVA suggested that this difference
409was statistically significant, F(1, 56)=53.05, p<.001, partial η2=.49. Levene’s test for
410violation of homogeneity of variance was not significant, p=.217.

PA: Problem Analysis PC: Problem Critique CD: Criteria Development
SD: Solution Development SE: Solution Evaluation 
Arrow: Transition from one type of activity to self or another category 

WS Groups IS Groups

PC 

CD SE 

SD 

PA PC 

SD 

CD 

PA 

SE 

Fig. 1 Likely sequential patterns in the discussions of well- vs. ill-structured groups

M. Kapur

JrnlID 11412_ArtID 9106_Proof# 1 - 24/12/2010



EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

411Note how LsA revealed differences in interactional patterns that the coding-and-counting
412analysis of functional content did not. First, coding and counting revealed that IS groups
413spent a greater proportion of their interactional activity on problem analysis and criteria
414development than WS groups. However, what coding and counting did not reveal was that
415WS groups’ problem analysis and criteria development were more clustered together rather
416than spread throughout the discussion—a temporal pattern revealed by LsA. Second,
417coding and counting revealed that IS groups had a greater proportion of problem critique
418than WS groups. What it did not reveal was that such critique in IS groups tended to be
419more clustered as well, rather than spread throughout the discussion—another temporal
420pattern revealed by LsA. Third, coding and counting revealed that WS groups spent greater
421proportion on solution development than IS groups. What it did not reveal was that such
422solution development in WS groups tended to be clustered rather than spread throughout
423the discussion—another temporal pattern revealed by LsA. Fourth, coding and counting did
424not reveal any difference in solution evaluation between WS and IS groups. However, LsA
425revealed that solution evaluation in IS groups tended to be more clustered than in WS
426groups. Finally, LsA was also able to pick several significant transitions between the
427process categories, which coding and counting simply could not.
428In sum, where coding and counting suggested differences in the relative proportions of
429the process categories, LsA suggested further differences in the temporal patterns of these
430process categories. Where coding and counting did not suggest a difference in the process
431categories, LsAwas able to pick differences in temporal pattern in these categories. In other
432words, where things appeared to be different, LsA differentiated them even further, and
433where there appeared to be no difference, LsA revealed important differences. Therefore, it
434is reasonable to suggest that LsA revealed temporal patterns in WS and IS groups that
435coding and counting could not reveal.
436However, revealing temporal patterns alone is not sufficient. These patterns must be of
437some value, both theoretically and empirically. Theoretically, it is not unreasonable to argue
438that the above temporal patterns are in fact important for learning. Research strongly
439suggests that processes of defining the problem, critique, questioning, elaboration, and
440explanation are germane for learning (Anderson 2000; Q3Chi 1989). Consequently, the
441sequences in which these processes unfold are naturally germane for learning (Barron 2003;
442Kapur 2008; Van Lehn et al. 2003). This is because these sequences represent how learners
443(in groups) explored the problem and solution spaces for representations and methods to
444solve the complex problem.
445Therefore, on the premise that the above temporal patterns are theoretically important,
446they must at least be able to significantly explain some variance in group performance. If
447not, empirical evidence for their argued theoretical importance would be weak in the
448present case. Furthermore, an even more stringent empirical test would compare the
449predictive power of coding and counting patterns with temporal patterns in explaining
450variation in group performance. This is precisely the purpose of the analyses described in
451the following section.

452Analyzing and explaining group performance

453The purpose of analyzing group performance was to relate it to the coding and counting as
454well as temporal patterns found in the preceding sections. I first examine differences in the
455group performance of WS and IS groups, and then demonstrate that the strongest
456interactional predictor of group performance is the temporal pattern of transitions between
457process categories.
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458The measure of group performance was operationalized as the quality of solution
459produced by the group. In consultation with the teachers, the strategy adopted was to focus
460on the extent to which groups were able to support their decisions through a synthesis of
461both qualitative and quantitative arguments, and supporting them with justifiable
462assumptions. The extent to which groups were able to accomplish this was rated on a
463scale from 0 to 4 points in units of 0.5 using a holistic rubric shown in Table 2. Two trained
464doctoral students scored the solutions with an inter-rater reliability (Krippendorff’s alpha)
465of .93.
466An ANCOVA, F(1, 56)=4.61, p=.036, partial η2=.11, revealed that the quality of
467solution produced by WS groups, M=2.84, SD=1.26, was on average significantly better
468than that of IS groups, M=1.29, SD=1.08, controlling for group prior knowledge. Levene’s
469test for violation of homogeneity of variance was not significant, p=.426. This difference in
470solution quality was not particularly surprising given that IS groups had to solve a problem
471that was more complex and ill-structured. Analysis of functional content and transition
472patterns supports this contention. After all, IS groups spent more effort analyzing and
473critiquing the problem, setting appropriate criteria for a solution than actually developing a
474solution, resulting in poor group performance. WS groups, on the other hand, solved a
475problem that afforded a more defined problem and solution space. Thus, WS group
476discussions were, on average, more coherent, less complex, and less likely to exhibit
477transitions or feedback loops. WS groups found it relatively easier to analyze the problem,
478set appropriate criteria, and develop a solution, which, in turn, resulted in relatively higher
479group performance.
480From a methodological standpoint, it is important to explain this variation in group
481performance. Recall that if the methodological arguments thus far hold, then temporal
482patterns should not only explain this variation significantly but also perform better than the
483functional content in explaining this variation. To test this, I employed a regression analysis
484with group solution score as the dependent variable. The predictors entered (in the order
485they are mentioned) were: problem type, proportion of FCS process categories in a group
486discussion, and number of significant transitions between process categories in a group
487discussion.
488The regression model was significant, F(7, 51)=7.56, p<.001, with R2=.509 and
489adjusted R2=.442. Table 3 presents the model summary. As can be seen, the temporal

t2.1 Table 2 Rubric for coding quality of group solution

t2.2 Quality Description

t2.3 0 Solution weakly supported, if at all

t2.4 1 Solution supported in a limited way relying either on a purely quantitative or a qualitative
argument with little, if any, discussion and justification of the assumptions made

t2.5 2 Solution is only partially supported by a mix of both qualitative and quantitative arguments;
assumptions made are not mentioned, adequately discussed, or justified to support the
decision

t2.6 3 Solution synthesizes both qualitative and quantitative arguments; assumptions made are not
adequately discussed and justified to support the decision

t2.7 4 Solution synthesizes both qualitative and quantitative arguments; assumptions made are
adequately discussed and justified to support the decision

Mid-point scores of .5, 1.5, 2.5, and 3.5 were assigned when the quality of solution was assessed to be
between the major units 0, 1, 2, 3, and 4
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490pattern predictor (number of significant transitions) is the only significant predictor of
491group performance, thereby withstanding the empirical test in the present case.

492Discussion

493The purpose of this paper was specific and modest. I argued for the need to develop
494methods for uncovering temporal patterns in CSCL groups, and advanced one such
495measure to examine transition patterns between process categories. Using LsA, analysis
496revealed significant temporal patterns that the typical coding and counting method could
497not reveal. More importantly, analysis demonstrated how variation in temporal patterns was
498significantly related to variation in group performance. In fact, the temporal pattern
499predictor was the only interactional predictor of group performance. This analysis,
500therefore, bolsters the case for more work on developing and testing temporal methods
501and measures in CSCL research.
502It was not surprising that the measure of temporal patterns emerged as a more powerful
503predictor of group performance. One only needs to compare the nature of information
504tapped by coding and counting with that tapped by temporal patterns to explain why this
505was the case. As argued earlier, coding and counting only captures every instance of
506occurrence of a particular process category in the discussion. By aggregating this data, it
507gives no indication of when or where in the discussion the process category occurred. LsA,
508however, provides that temporal information. To calculate significant transitions, LsA
509necessarily has to take into account the number of instances of a particular process category,
510or else the transition probabilities could not be calculated. Furthermore, it also examines
511process categories before and after a given process category. Therefore, LsA not only takes
512into account the information that coding and counting captures, but it goes further and
513captures information about the order and sequencing of the process categories. Inductively,
514it includes information from all preceding process categories because the likelihood of a
515given process category is an inductive function of all the preceding likelihoods. Given this,
516the greater predictive power of temporal patterns over the coding and counting patterns
517makes sense conceptually.
518What also needs explanation is the predictive relation between variation in temporal
519patterns and group performance. The negative coefficient for the predictor—number of
520significant transitions—in the regression model (see Table 3) suggested that the greater the
521number of significant transitions between process categories in a group discussion (as was

t3.1 Table 3 Model summary for predicting group performance

t3.2 Source B SE Beta t p

t3.3 Constant 3.472 .969 3.582 .001

t3.4 Problem Type .707 .432 .288 1.636 .108

t3.5 PA −1.008 5.096 −.031 −.198 .844

t3.6 PC −12.258 8.607 −.218 −1.424 .161

t3.7 CD −.065 6.670 −.001 −.010 .992

t3.8 SD .879 1.304 .081 .674 .503

t3.9 SE −2.124 2.534 −.100 −.838 .406

t3.10 No. of Sig. Transitions −.252 .053 −.721 −4.716 <.001
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522the case for IS groups), the lower the group performance. This may seem to contradict my
523theoretical arguments. After all, part of my argument emphasized the theoretical importance
524of the very kinds of sequences of process categories that were more likely in IS groups. If
525such sequences are theoretically germane for learning, then how is it that IS groups with a
526greater likelihood of these sequences performed worse than WS groups who had a lower
527likelihood of these very theoretically-important sequences?
528The answer to this question lies at the incommensurability between performance and
529learning (Clifford 1984; Schmidt and Bjork 1992). I have discussed this incommensurability
530in greater detail elsewhere as part of my research program on productive failure (see Kapur
5312008, 2009, 2010; Kapur and Kinzer 2009). For the present purposes, I provide only a brief
532explanation: Increasingly there is a realization that conditions that maximize performance (e.g.,
533solving well-structured problems) may not necessarily be the ones that maximize learning (e.g.,
534as useful for solving complex, ill-structured problems). Even though IS groups had
535significantly lower group performance, process analysis suggested that they engaged in
536processes (of analyzing, critiquing, explaining, evaluating, etc.) in ways that were germane for
537learning. Therefore, processes that seemed to lead to failure (in group performance) initially
538constituted the locus of powerful learning in the longer term. In other words, failure in the
539shorter term can be productive in the longer term insofar as learners engage in processes that are
540germane for learning; processes that may not necessarily lead to successful performance at first
541(Clifford 1984; Schwartz and Bransford 1998).

542Reliability and validity

543Inferences drawn from new measures are strong in so far as the coding scheme is reliable
544and valid. Because LsA runs statistical operations on the sequence of FCS process
545categories, the reliability and validity of interpretations derived from LsA are, in part, a
546function of the reliability and validity of the FCS process categories. In this study, I opted to
547use an existing coding scheme, namely the functional category system (FCS) developed by
548Poole and Holmes (1995). The reasons for choosing the FCS as the interaction coding
549protocol for this study are:

550i. The FCS was developed specifically for the purpose of studying small-group
551collaborative interactions in problem-solving contexts.
552ii. The FCS categories are theoretically well grounded in the cognitive and educational
553theories of problem solving, thereby increasing their content validity.
554iii. The FCS has been tried and tested in several research studies (for example, Poole and
555Holmes 1995; Jonassen and Kwon 2001; Kapur 2008; Kapur and Kinzer 2009),
556making it more reliable and stable than developing an entirely new coding scheme
557(Gall et al. 1996).
558iv. From a broader perspective of research design and measurement, using a pre-existing
559interaction coding scheme adds to the validity of the inferences drawn from the results
560(Rourke and Anderson 2004).

561Within the constraints and limitations of a singly study, the above reasons positively
562influence the reliability and validity of the quantitative content analysis and LsA.

563Limitations

564As with any new method, its repeated application and modification over multiple data sets
565is needed before strong and valid inferences about the underlying cognitive processes can
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566be made (Rourke and Anderson 2004). Furthermore, I delimited the scope of this paper to
567quantitative analysis, mainly to make the argument as succinct as possible. This
568delimitation is not to be mistaken as a belief in a singular reliance on quantitative methods
569alone, for I strongly believe in triangulating findings with microgenetic qualitative analysis.
570Elsewhere, I have carried out LsA as part of a mixed-method analysis (Kapur 2008).
571Indeed, this only bolsters the reliability of the LsA analysis discussed earlier.
572Another limitation includes the requirement of capturing data in which there is sufficient
573manifestation of process categories; the greater the number of process categories, the
574greater the requirement of manifestation. While capturing the data was made easy due to the
575technology itself, analyzing the data was time consuming. But the marginal effort over and
576above what one would have done for coding and counting was minimal because the output
577of coding and counting—a representation of group discussion as a temporal sequence of
578process categories—formed the input data for LsA. As such, LsA can be a fairly useful
579addition to the methodological tool-kit of CSCL researchers who already plan to carry out
580coding and counting types of analysis. More importantly, inferences drawn by researchers
581from a combined analysis will have meaningful implications for the design of CSCL
582environments, especially with regard to the design and scaffolding of instruction and
583learning environments for problem-solving tasks (Dillenbourg 2002; Reimann 2009).
584Finally, a commonly-held but (I believe) misconceived limitation of LsA and event-
585based analyses in general must also be addressed. Although Reimann (2009) advanced the
586argument for event-based analyses, he did not directly address this misconception, and so it
587needs to be addressed here. It is commonly argued that because the transition probabilities
588for a particular event are calculated based only on the previous event in the sequence, that
589event-based analysis such as LsA throw away information about preceding temporal events
590or sequences, which makes such methods overly simplistic and impoverished. In the words
591of Suthers et al. (2007), these methods “use a state-based representation that reduces the
592sequential history of interaction to the most recently occurring event category.” In other
593words, it is a huge error to model an event that depends upon a cumulative series of events
594leading up to it as though it depends only upon the preceding event.
595I believe this commonly-held limitation arises from a confusion of the difference
596between a transition probability and the probability of an event. The transition probabilities
597are calculated pair-wise, that is, the probability of an event occurring immediately after a
598given event; it is a conditional probability. The probability of an event however is an
599inductive function of the various transition probabilities preceding it. For example, an event
600has a certain probability of occurring after another event, which in turn has a certain
601probability of occurring after yet another event, and so on. Mathematically inducting on
602these transition probabilities suggests that the probability of an event occurring is not
603simply the transition probability but instead a function of the preceding transition
604probabilities. Therefore, the occurrence of an event is a function of the very information
605from its history that it is mistakenly criticized for having been thrown away. Even so, one
606has to acknowledge that quantitative event-based analyses do represent reductions of the
607richness and complexity of group processes, which forms an inherent limitation. This is
608why I advocate their use as part of a more comprehensive mixed-method analytical regime,
609so as to achieve greater reliability and validity of interpretation derived from these methods.

610Future directions

611Moving forward, there is a need to apply the proposed method in other contexts and
612settings. Better indications of the validity and reliability will emerge from a repeated
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613application and modification of the measures in triangulation with other quantitative and
614qualitative analyses over multiple data sets. In turn, this will lead to fine-tuning of the
615measures in an iterative fashion.
616Concomitantly, there is also a need for developing new measures, especially at a
617macroscopic level of analysis, in particular, the stable interaction phases that a discussion
618goes through. In other words, a problem-solving discussion can be conceptualized as a temporal
619sequence of phases. One can use several methods to isolate temporal phases, including
620measures of genetic entropy (Adami et al. 2000), intensity of mutation rates (Burtsev 2003) or,
621in the case of problem interactions, the classification of coherent phases of interaction.
622Whether these phases involve genetic mutations or stable interactions, sequences of
623fluctuations often alternate between stable phases, with chaotic phases interspersed
624throughout. These often correspond to low vs. high mutation rates, clustered vs. unclustered
625interactions. With the phases identified, one can calculate and predict the probabilities of
626moving from one phase to another using, for example, Hidden Markov Models (HMM).
627Unlike LsA and Markov Models that work on transitions between states visible to the
628observer or categories coded by the observer, HMMs allow for a detection of latent or hidden
629patterns that are not directly visible to, or coded by the observer. As a result, one may begin
630to understand when and why phase transitions, cascades, and catastrophes (sudden mass
631change), as well as stable phases emerge. More importantly, one may begin to understand
632how the configuration (not just the presence) of one phase may influence the likelihood of
633moving to any other phase. Whether one can control or temper these phases, or whether such
634control or temperance would prove a wise practice remains an open question, which, even if
635only partially answered, will be a major breakthrough in characterizing and modeling the
636problem solving process (Kapur et al. 2006; Voiklis et al. 2006).

637Conclusion

638Temporality clearly matters. By emphasizing the need for temporal measures as well as
639developing them, CSCL researchers who wish to study problem-solving processes will find
640choices among several lenses at varying resolutions. Used in addition to coding and
641counting methods, temporal measures can reveal information about sequences and
642transitions that are important for learning. When carried out as part of a comprehensive
643mixed-method analytical program, one can zoom from micro- to macroscopic properties
644and behaviors of the problem-solving process, which would be critical to building a more
645powerful process theory of collaborative problem solving.
646
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